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Pulse propagation and optical-klystron free-electron-laser devices

G. Dattoli, L. Mezi, and L. Bucci
ENEA, Dipartimento Innovazione, Divisione Fisica Applicata, Centro Ricerche Frascati,

Casella Postale 65, 00044 Frascati, Rome, Italy
~Received 25 October 1999!

We derive the equation governing the evolution of the optical field amplitude of a free-electron-laser
oscillator operating in the optical-klystron configuration. The equation includes short pulse effects, due to the
finite length of the electron bunches, and are valid under the assumption of small signal regime and low gain.
Stationary solutions of the supermode type, analogous to those of conventional free-electron-laser configura-
tions, are shown to exist for this case, too. Analytical expressions for the optical pulse shape are derived,
without any assumption of dominance of the dispersive section, in the case of the long bunch regime, namely
when the bunch length is larger than the slippage length. We present useful gain formulas, including the
combined effect of dispersive section and pulse effects, and discuss the limits of validity of our treatment.

PACS number~s!: 41.60.Cr
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I. INTRODUCTION

An optical-klystron ~OK! free-electron laser~FEL! em-
ploys two undulators~usually with the same number of pe
riods Nu and period lengthlu!, separated by a drift sectio
~see Fig. 1!. A device of this type is used to increase the ga
when long straight sections are not available, as in the c
of the FEL operating with storage rings. The mechani
leading to the gain enhancement is simply due to the fact
in the first undulator ane-beam energy modulation occur
such a modulation transforms into a density modulation
the drift part thus providing a more substantive emission
the second undulator. The crucial factor, characterizing
increment of gain with respect to a device operating in
normal configuration, is the ratio between the length of
drift section to the individual undulator length. This quant
denoted byd ~see below! controls much of the physics of th
system and must be carefully chosen to avoid gain reduc
effects due to inhomogeneous broadening contributions
limitations in the attainable output power~for further com-
ments see Ref.@1#!.

In most of the OK-FEL experiments@2,3# values of d
significantly larger than unity have been chosen. This type
device has operated so far with storage rings, character
by an electron beam with an extremely low energy spread
that the constraints due to inhomogeneous contribution
be ignored.

The assumption of larged allows a noticeable simplifica
tion of the relevant gain expressions and of the evaluatio
the quantities characterizing the evolution of the system
may happen, however, that the optimization of the dev
indicates that it is convenient to operate with values ofd not
too large with respect to unity, this may occur if it is conv
nient to operate at larger output power or in situations
which some kind of instability is affecting the quality of th
beam as it happens in high current storage rings. In
hypothesis one cannot perform simplifying assumptions
is obliged to deal with the complete gain expression.

In this paper we will treat the problem of pulse propag
tion in OK FEL’s without the assumption of a domina
dispersive section length. The results we will obtain co
plete those obtained by Elleaume@4# and Litvinenko and
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Vinokurov @5# and provide useful scaling laws concernin
the effect of short pulses on the OK FEL performances.

The gain of free-electron-laser~FEL! devices reads@6,1#

G~n,d!522pg0

]

]n

3F S sinS n

2D
n

2

D 2

$11cos@n~11d!#%G ,

d5
Nd

Nu
. ~1!

The quantitiesg0 andn denote the small signal gain coeffi
cient associated with one undulator section and the detu
parameter, respectively, and are linked to the device par
eter by~mks units are used,Nd is the number of equivalen
periods of the dispersive section!,
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FIG. 1. Layout of an optical klystron device.
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where k is the undulator strength andf b( ) is the Bessel
factor correction due to the assumption that the undula
are linearly polarized. The physical meaning of Eq.~1! is
fairly transparent; it contains indeed the gain contribut
from the two separated undulators and the gain enhan
part due to the interference contribution.

For reasons that will appear more clearly in the followin
it is convenient to recast Eq.~1! as

G~n,d!522pg0

]

]n F 4S 11
d

2D 2S sin~ n̄ !

n̄ D 2

1d2S sinS n%

2D
n%

2

D 2

12S sinS n

2D
n

2

D 2

22S sinS ñ

2D
ñ

2

D 2

~11d!2G , ~3!

where we have set

n̄5nS 11
d

2D , n% 5nd, ñ5n~11d!. ~4!

Equation~3! has the advantage of being written as fo
independent gain contributions. Any one of Eqs.~1!–~3! ac-
count for the absorptive part of the interaction only. Ho
ever Eq.~3! suggests that the inclusion of the dispersive p
can be achieved by defining the following complex ga
function:

G~n,d!522g0

]

]n F4S 11
d

2D 2

h~2n̄ !1d2h~n% !12h~n!

22h~ ñ !~11d!2G , ~5!

where

h~n!52pE
0

1

~12t !eintdt. ~6!

The real and imaginary parts of Eq.~5! account for the ab-
sorptive and dispersive parts of the interaction, respectiv

It must be underlined that the analysis developed so
applies to devices operating with a continuouse-beam. Pulse
propagation effects arise in devices operating with rad
frequency accelerators, which providee-beams with a pulsed
structure reflecting on the laser structure itself. We will a
sume in the following that electronic packets are charac
ized by longitudinal distributionsf (z) with rms lengthsz .

The problems associated with short pulse effects h
been widely discussed in FEL literature@7–9#, and will not
be reconsidered here. In full analogy with the ordinary FE
rs
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@7# and according to the definition of complex gain given
Eq. ~5!, we write the OK-FEL low gain pulse propagatio
equation as

2Tc

]

]t
a~z,t !1ha~z,t !1Dg0Q

]

]z
a~z,t !

522i
~2p!3/2g0

mcD
2 E

0

D

dy yQS n
y

D
,d D

3a~z1y,t !E
z1y

z1D

f ~ z̃!dz̃, ~7!

where t is a discrete time linked to the cavity round tr
periodTc , a(z,t) is the Colson’s field complex amplitude,h
denotes the cavity losses,D5Nl is the slippage distance
over one undulator length,mc5D/sz is the coupling param-
eter, and@see also Eqs.~5! and ~6!#

Q~n,d!58S 11
d

2D 3

e2in@11~d/2!#1d3eind

12@ein2~11d!3ein~11d!#. ~8!

The parameterQ is linked to the cavity mismatchdLc ,
necessary to compensate the lethargic effect, by the rela

Q5
4dLc

g0D
. ~9!

The physical meaning of Eq.~7! is fairly straightforward; it
contains indeed all the characteristic effects of pulse pro
gation dynamics.

The laser field value at a given point preserves
memory of the gain process in one pass. The convolu
integral on the right-hand side~rhs! of Eq. ~7! contains the
effect of the relative slippage, between electron and opt
packets, and the relevant gain contribution weighted with
contributing part of the electron packet. Equation~7! cannot
be solved analytically as it stands; useful analytical solutio
can be obtained under physical assumptions concerning
length of the electron bunch compared to the slippage
tance. This aspect of the problem and the relevant results
be discussed in the forthcoming sections.

II. THE OK-FEL PULSE PROPAGATION EQUATION
IN THE LONG BUNCH APPROXIMATION

It has been shown that, in the case of ordinary FELs,
integro-differential equation~7! can be transformed into a
exactly solvable second-order Fokker-Planck equation if
electron bunch length is much larger than the slippage len
@8,9#, namely,

D!sz . ~10!

This assumption implies that the optical field has a slow
varying amplitude experiencing a small portion of the ele
tron bunch around the maximum of its distribution. We c
therefore make an expansion in the longitudinal coordina
approximate the electron bunch distribution as
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f ~z!>
1

~2p!1/2sz
S 12

z2

2sz
2D , ~11!

and finally get

]

]t
a~ z̃,t!5FV2S 1

2

]2

] z̃2D1V1S 1

2
z̃2D

1V4

]

] z̃
1V3z̃1V5Ga~ z̃,t!,

z̃5
z

sz
, t5

g0t

2Tc
, ~12!

where we have set

V152G1~n,d!, V25mc
2G3~n,d!,

V352
mc

2
@11G1~n,d!#, V45mc@G2~n,d!2Q#,

V55G1~n,d!2
h

g0
~13!

and

G1~n,d!522
]

]n
H~n,d!,

G2~n,d!52i
]2

]n2 H~n,d!,

G3~n,d!52
]3

]n3 H~n,d!,

H~n,d!54S 11
d

2D 2

h~2n̄ !1d2h~n% !12h~n!

22h~ n̄ !~11d!2. ~14!

The pulse propagation equation has been therefore
duced to a diffusive equation with a quadratic ‘‘potential
The eigenstates associated with Eq.~11! are the OK-FEL
supermodes~SM! with eigenvalues@8#

ln5G1~n,d!2
h

g0
2

@G2~n,d!2Q#2

2G3~n,d!
2mcS n1

1

2D
3@G1~n,d!G3~n,d!#1/2. ~15!

The physical meaning of the so far obtained results will
discussed below.

The real part ofln is linked to the OK-FEL SM gain,
while the imaginary part to its phase variation. It is wor
noting that ~a! the first two terms provide essentially th
usual gain-loss contribution ~note that Re@G1(n,d)#
5G(n,d)/g0, ~b! the third term provides a contribution due
the lethargy and cavity mismatch, and~c! the last term re-
moves the degeneracy between the various supermodes
is linked to the coupling parametermc which controls the
slippage effects and the strength of the coupling between
longitudinal modes@7#.

It has been shown that apart from the higher-order cor
tion in d the maximum continuous beam OK-FEL ga
e-

e

and

he

c-

@namely, the real part ofG1(n* ,d),v* is the value of the
detuning parameter where the maximum gain value is
cated# scales withd as @1#

Re@G1~n* ,d!#5830.853~110.913d!. ~16!

An idea of the corrections due to the other terms are p
vided by Fig. 2 where we have reported the gain of t
fundamental (n50) SM vs Q. It is worth noting that the
maximum gain is obtained for

Re@G2~n* ,d!#5Q. ~17!

We have numerically checked that

Re@G2~n* ,d!#>0.45632383~110.913d!2. ~18!

Combining this last result and that relevant to the defi
tion of Q, we obtain the following value of the cavity lengt
mismatch compensating the lethargic effect:

dLc5 1
4 ~0.456gOKDOK!,

gOK58g0~110.913d!,

DOK52D~110.913d!. ~19!

Equation~18! reproduces the result of the ordinary FE
provided that the small signal gain coefficient is replaced
gOK and the slippage byDOK which represents the total slip
page including the contribution of the dispersive section.

The effect on the gain of the third contribution is that
providing a further reduction; the inclusion of this ter
yields for the fundamental supermode a perfectly matc
cavity and negligible losses,

g0 Re~l0!>0.85gOKS 12
mc

OK

x~d!
D ,

mc
OK5

DOK

sz
, ~20!

wherex(d) is a function exhibiting an almost linear depe
dence vsd and can be parametrized as

FIG. 2. Re(l0)/g0 vs Q for d55, mc50.05,n* 50.26 ~continu-
ous line! maximum gain evaluated from Eq.~19!.



t o
he

i

e
Tr

b
L

or

te
tio
S

te

ol
riz
as
g-

e

at
as

he

a-

PRE 61 7055PULSE PROPAGATION AND OPTICAL-KLYSTRON . . .
x~d!>310.1d. ~21!

The results of this section yield an idea of what the impac
pulse propagation effects are on the OK-FEL gain; furt
and more quantitative considerations will be developed
the next section.

III. CONCLUDING REMARKS

We must underline that the so far developed consid
ations apply, e.g., to the FEL experiment in progress at
este with Elettra Ring, all the relevant parameters can
found in Ref.@10#. Here we will discuss the case of a FE
operating with a high energy Linac having ane-beam energy
of 200 MeV, an undulator period lengthlu515 cm, undula-
tor strengthK5&, a number of periods of each undulat
N510, d510, an electron pulse withsz51022 cm, and a
small signal gain coefficientg05531023. In this case the
net gain of the device is given in Fig. 3; the constant dot
line refers to the total gain in absence of pulse propaga
corrections and the dashed curve refers to the gain of the
of order 1. The optimum cavity mismatch can be calcula
from Eq. ~19! and is about 1mm.

We have already remarked that the present analysis h
under a number of approximation that is worth summa
ing: ~a! the integral equation can be derived under the
sumption of low gain, which implies that the OK small si
nal coefficientgOK should satisfy the condition

gOK,0.3, ~22!

and ~b! the expansion leading to Eq.~12! imposes a condi-
tion of the type~9!, involving the total slippage, namely,

DOK!sz . ~23!
f
r
n

r-
i-
e

d
n
M
d

ds
-
-

To be more quantitative we can fix the limit of validity of th
present analysis tomc

OK<0.5.
Regarding the nature of the OK-FEL-SM we note th

they are essentially harmonic-oscillator eigenfunctions,
suggested by the fact that Eq.~12! is a Schro¨dinger-like
equation with a quadratic potential. Without entering into t
details of the computation which can be found in Refs.@8#,
@9#, we write the SM as

Fn~ z̃!5Hn@a~ z̃1b!#exp@2c~ z̃1d!2#, ~24!

whereHn(¯) are Hermite polynomials and~a,b,c,d! are ex-
pressed in terms of theG functions, namely,

FIG. 3. Maximum gain of an OK FEL without pulse propag
tion corrections~dotted line!. Gain of the zeroth-order SM vsQ
~continuous line!. Gain of the first-order SM vsQ ~dashed line!.
n* 50.15,d510, mc50.01.
a5
1

Amc
S G1~n,d!

G3~n,d! D
1/4

, c5
1

2mc
S G1~n,d!

G3~n,d! D
1/2

, b5
mc@G1~n,d!1G2~n,d!#

2G1~n,d!
,

d5
mc@G1~n,d!1G2~n,d!#12AG1~n,d!/G3~n,d!@G3~n,d!2Q#

2G1~n,d!
. ~25!
e.
be
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ns
not

mi-

o.
The rms width of the fundamental SM is

s̃5
Amc

A2 Re@G1~n,d!/G3~n,d!#
. ~26!

Recalling thatz̃5z/sz , we find the following scaling rela-
tion:

s5 f ~d!ADOKsz, ~27!

where f (d) is a function which roughly scales as

f ~d!>110.07d. ~28!
Equation~26! yields an idea of the length of the light puls
Further comments on the nature of the OK-FEL-SM will
presented in a forthcoming paper.

We must underline that the results obtained in this pa
are not dissimilar from analogous theoretical estimatio
@4,5#. The present analysis is more general since it does
contain the assumption that the OK part of the gain is do
nating and is general enough to relax condition~10!.
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