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Pulse propagation and optical-klystron free-electron-laser devices
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We derive the equation governing the evolution of the optical field amplitude of a free-electron-laser
oscillator operating in the optical-klystron configuration. The equation includes short pulse effects, due to the
finite length of the electron bunches, and are valid under the assumption of small signal regime and low gain.
Stationary solutions of the supermode type, analogous to those of conventional free-electron-laser configura-
tions, are shown to exist for this case, too. Analytical expressions for the optical pulse shape are derived,
without any assumption of dominance of the dispersive section, in the case of the long bunch regime, namely
when the bunch length is larger than the slippage length. We present useful gain formulas, including the
combined effect of dispersive section and pulse effects, and discuss the limits of validity of our treatment.

PACS numbe(s): 41.60.Cr

[. INTRODUCTION Vinokurov [5] and provide useful scaling laws concerning
the effect of short pulses on the OK FEL performances.
An optical-klystron (OK) free-electron lasefFEL) em- The gain of free-electron-las€FEL) devices read§s,1]

ploys two undulatorgusually with the same number of pe-
riods N, and period length\ ), separated by a drift section
(see Fig. 1L A device of this type is used to increase the gain
when long straight sections are not available, as in the case 2
of the FEL operating with storage rings. The mechanism sin( K)
leading to the gain enhancement is simply due to the fact that

in the first undulator are-beam energy modulation occurs; v
such a modulation transforms into a density modulation in 2

the drift part thus providing a more substantive emission in

the second undulator. The crucial factor, characterizing the N
increment of gain with respect to a device operating in the 5= 9
normal configuration, is the ratio between the length of the Ny
drift section to the individual undulator length. This quantity
denoted bys (see below controls much of the physics of the
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The quantitiegy, and v denote the small signal gain coeffi-

system and must be carefully chosen to avoid gain reductioﬁiem associated with one undulator section and the detuning

effects due to inhomogeneous broadening contributions dparameter, respectively, and are linked to the devi(_:e param-
limitations in the attainable output powéfor further com-  ©ter by(mks units are usedy is the number of equivalent

ments see Refd]). periods of the dispersive sectipn

In most of the OK-FEL experimentg2,3] values of §
significantly larger than unity have been chosen. This type of Jo=
device has operated so far with storage rings, characterized
by an electron beam with an extremely low energy spread so
that the constraints due to inhomogeneous contribution can
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be ignored.
The assumption of largé allows a noticeable simplifica- 1+ 2
tion of the relevant gain expressions and of the evaluation of
the quantities characterizing the evolution of the system. It A K2
L ; u
may happen, however, that the optimization of the device )\rzﬁ(lJrE . Ly=Ny\,,
Y

indicates that it is convenient to operate with values obt
too large with respect to unity, this may occur if it is conve-
nient to operate at larger output power or in situations in _2mC — 2N W~ @)
which some kind of instability is affecting the quality of the B v emi
beam as it happens in high current storage rings. In this
hypothesis one cannot perform simplifying assumptions and
is obliged to deal with the complete gain expression. 1 2
In this paper we will treat the problem of pulse propaga-
tion in OK FEL’s without the assumption of a dominant
dispersive section length. The results we will obtain com-
plete those obtained by Elleaunjé] and Litvinenko and FIG. 1. Layout of an optical klystron device.
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where k is the undulator strength ant},() is the Bessel [7]and according to the definition of complex gain given in
factor correction due to the assumption that the undulatorgq. (5), we write the OK-FEL low gain pulse propagation
are linearly polarized. The physical meaning of Ef) is  equation as

fairly transparent; it contains indeed the gain contribution

from the two separated undulators and the gain enhancing d
2T —a(z,t)+ na(z,t)+Agy0® ﬁa(z,t)

part due to the interference contribution. ot
For reasons that will appear more clearly in the following, /
it is convenient to recast E¢l) as B (277)329 f q yQ( )
MCAZ
J 8\?(sin(m))\? % f
— a(z+y,t f(2)dz, 7
G(v,0)=—2mgo- - 4(1+5) ( = ) (z+y,t) vy (2) 0

wheret is a discrete time linked to the cavity round trip
B\ ? () ? periodT., a(z,t) is the Colson’s field complex amplitude,
S'”(E) Sln(z) denotes the cavity lossed,=NN\ is the slippage distance
2 over one undulator lengthy.= A/, is the coupling param-

v r eter, andsee also EqY5) and(6)]
2 2
S 3
. P 2 Q(V 6):8(1+_ e2iV[1+(5/2)]+ &")eiVﬁ
sin ' 2
— 2 , A
2 3 (1+6) |, ©)] +2[elv_(l+ 5)3elv(1+6)]_ (8)
2 The paramete® is linked to the cavity mismatclL .,
where we have set necessary to compensate the lethargic effect, by the relation
S 4oL
7=y(1+§  P=vs, T=w(1+0). 4) 0= 58 ©

The physical meaning of Eq7) is fairly straightforward; it
contains indeed all the characteristic effects of pulse propa-
gation dynamics.
The laser field value at a given point preserves the
memory of the gain process in one pass. The convolution
integral on the right-hand sidghs) of Eq. (7) contains the
effect of the relative slippage, between electron and optical
2 packets, and the relevant gain contribution weighted with the
h(2v)+ 8°h(¥) + 2h(v) contributing part of the electron packet. Equati{@ cannot

be solved analytically as it stands; useful analytical solutions

can be obtained under physical assumptions concerning the

(5) length of the electron bunch compared to the slippage dis-

tance. This aspect of the problem and the relevant results will
be discussed in the forthcoming sections.

Equation(3) has the advantage of being written as four
independent gain contributions. Any one of Egh—(3) ac-
count for the absorptive part of the interaction only. How-
ever Eq.(3) suggests that the inclusion of the dispersive part
can be achieved by defining the following complex gain
function:

1+§

d
I'(v,6)= —2905{4

—2h(7)(1+ 8)?

where

1 A Il. THE OK-FEL PULSE PROPAGATION EQUATION
h(v)=27rJ0 (1-t)e'*'dt. (6) IN THE LONG BUNCH APPROXIMATION

It has been shown that, in the case of ordinary FELS, the
The real and imaginary parts of E(h) account for the ab- integro-differential equatiori7) can be transformed into an
sorptive and dispersive parts of the interaction, respectivelyexactly solvable second-order Fokker-Planck equation if the
It must be underlined that the analysis developed so faelectron bunch length is much larger than the slippage length
applies to devices operating with a continuedseam. Pulse [8,9], namely,
propagation effects arise in devices operating with radio-
frequency accelerators, which providdeams with a pulsed A<go,. (10
structure reflecting on the laser structure itself. We will as-
sume in the following that electronic packets are character- This assumption implies that the optical field has a slowly
ized by longitudinal distribution§(z) with rms lengtho, . varying amplitude experiencing a small portion of the elec-
The problems associated with short pulse effects hav&ron bunch around the maximum of its distribution. We can
been widely discussed in FEL literaturé—9], and will not  therefore make an expansion in the longitudinal coordinate,
be reconsidered here. In full analogy with the ordinary FELsapproximate the electron bunch distribution as
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1 72 40
and finally get
J o 1 42 o 1,
9782 7)= || 5 752 )+l 52
(7 ~ i~
+Q4£+ng+ﬂ5 a(Z,T),
z t
==, =2 (12 . .
oy, 2T,
0 200 400 600
where we have set 8
Q=-T1(v,6), QZZ,ugFg,(V,&), FIG. 2. Rej)/gy vs O for §=5, u.=0.05, v* =0.26 (continu-
ous line@ maximum gain evaluated from E(L9).
Mc
(3= 7[1+F1(V'5)]’ Qa=pll'5(v,0)-0], [namely, the real part of ;(v*,8),v* is the value of the
detuning parameter where the maximum gain value is lo-
7 cated scales withé as[1]
Qs5=I1(v,6)— % (13
0 R T, (v*,8)]=8x0.85%(1+0.913). (16)
and
An idea of the corrections due to the other terms are pro-
_ J vided by Fig. 2 where we have reported the gain of the
F1(v,9)=—277H(».9), fundamental §=0) SM vs O. It is worth noting that the
X maximum gain is obtained for
I'a(v,6)=2i WH(Vﬁ)a R ,(v*,8)]=0. (17
PE We have numerically checked that
F3(v,5)=2FH(v,6),
v R T,(v*,8)]=0.456x2x8X(1+0.9135)2. (18)
2
H(v,8) =4 1+ 0 h(2v) + 82h( )+ 2h(v) Combining this last result and that relevant to the defini-
2 tion of ®, we obtain the following value of the cavity length
—2h(P)(1+ 6)2 (14) mismatch compensating the lethargic effect:
The pulse propagation equation has been therefore re- L= 17(0.45@0kA oK)
duced to a diffusive equation with a quadratic “potential.”
The eigenstates associated with Efjl) are the OK-FEL Jok=8Jo(1+0.91%),
supermode$SM) with eigenvalueg8]
Aok=2A(1+0.91%). (19
_ 7 [To(r,8)-OF 1
M=T4(v,8) = g 2[3(v,9) T M| N 2 Equation(18) reproduces the result of the ordinary FEL,

provided that the small signal gain coefficient is replaced by
X[T4(v,8)T3(v,8)]"2 (159 g and the slippage by ok Which represents the total slip-
Jage including the contribution of the dispersive section.
The effect on the gain of the third contribution is that of
providing a further reduction; the inclusion of this term
yields for the fundamental supermode a perfectly matched
cavity and negligible losses,

The physical meaning of the so far obtained results will b
discussed below.

The real part ofn,, is linked to the OK-FEL SM gain,
while the imaginary part to its phase variation. It is worth
noting that(a) the first two terms provide essentially the

usual gain-loss contribution (note that RE4(»,0)] oK

=G(v,6)/gy, (b) the third term provides a contribution due to Jo Re()\o)go_gggm(( 1— ’“L) ,

the lethargy and cavity mismatch, afc) the last term re- X(5)

moves the degeneracy between the various supermodes and

is linked to the coupling parameter, which controls the OK:AOK (20)

slippage effects and the strength of the coupling between the Ke o,
longitudinal modeg7].

It has been shown that apart from the higher-order correcwherex(d) is a function exhibiting an almost linear depen-
tion in § the maximum continuous beam OK-FEL gain dence vss and can be parametrized as
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X(8)=3+0.15. (21) 80

The results of this section yield an idea of what the impact of
pulse propagation effects are on the OK-FEL gain; further
and more quantitative considerations will be developed in
the next section.

RA/ g

IIl. CONCLUDING REMARKS

We must underline that the so far developed consider-
ations apply, e.g., to the FEL experiment in progress at Tri-
este with Elettra Ring, all the relevant parameters can be
found in Ref.[10]. Here we will discuss the case of a FEL 20 L L
operating with a high energy Linac having esdbeam energy 0 500 1000 1500
of 200 MeV, an undulator period lengiy,= 15 cm, undula- o
tor strengthK =v2, a number of periods of each undulator
N=10, §=10, an electron pulse with,= 102 cm, and a FIG. 3. Maximum gain of an OK FEL without pulse propaga-
small signal gain coefficiengo=5x10 3. In this case the tion corrections(dotted ling. Gain of the zeroth-order SM v®
net gain of the device is given in Fig. 3; the constant dottedcontinuous ling. Gain of the first-order SM vé) (dashed ling
line refers to the total gain in absence of pulse propagatiof™ =0-15,6=10, u=0.01.
corrections and the dashed curve refers to the gain of the SM
of order 1. The optimum cavity mismatch can be calculatedl© be more quantitative we can fix the limit of validity of the
from Eq.(19) and is about Jum. present analysis tpY¢<0.5.

We have already remarked that the present analysis holds Regarding the nature of the OK-FEL-SM we note that
under a number of approximation that is worth summarizthey are essentially harmonic-oscillator eigenfunctions, as
ing: (a) the integral equation can be derived under the assuggested by the fact that E¢L2) is a Schrdinger-like
sumption of low gain, which implies that the OK small sig- equation with a quadratic potential. Without entering into the
nal coefficientgok should satisfy the condition details of the computation which can be found in R¢8,

[9], we write the SM as

9ok<0.3, (22)

~ ~ S 2
and (b) the expansion leading to E¢L2) imposes a condi- Pn(2)=Hn[a(Z+Db)]lexd —c(z+d)7], (24)

tion of the type(9), involving the total slippage, namely, . .
whereH (- --) are Hermite polynomials an@,b,c,d are ex-

Aok<0,. (23 pressed in terms of thE functions, namely,

1 (Fl(v,ﬁ))”“ 1 (Fl(v,c?))l’z b pclI'1(v,0)+T'5(v,0)]
a: Y L C: 1 = 1
Vi \ Ta(v,5) 2pc \Ta(v,8) 2T y(v,6)
d= e[ T1(v,8) +T5(v,8)]+ 2T 1(v,8)/T5(v,8)[T'3(v,5)— O] (25
B 2l 1(v,0) '
|
The rms width of the fundamental SM is Equation(26) yields an idea of the length of the light pulse.
Further comments on the nature of the OK-FEL-SM will be
5 NR presented in a forthcoming paper.
o= (26) We must underline that the results obtained in this paper

V2 RETy(v,6)/T5(v,0)] are not dissimilar from analogous theoretical estimations

[4,5]. The present analysis is more general since it does not
contain the assumption that the OK part of the gain is domi-
nating and is general enough to relax conditi@f).

Recalling thatz=z/o,, we find the following scaling rela-
tion:

o=1(6)VAoko, (27)
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